PLANT SCHEDULE

<table>
<thead>
<tr>
<th>BUDGETED QTY</th>
<th>ORDERED QTY</th>
<th>BUDGETED LIST</th>
<th>ORDERED LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

PLANTING NOTES

1. The contractor shall verify the location of all underground utilities prior to excavating plant pits.
2. The landscape contractor shall maintain all plantings within the specified size range. If a plant is smaller than the specified size range, it must be replaced with a larger one. If a plant is larger than the specified size range, it must be replaced with a smaller one.
3. All planting boxes shall be 1' x 1' x 1' minimum size. If any box is smaller, it must be replaced with a larger one.
4. All plant materials must be certified and approved by the landscape architect prior to and after planting.
5. Plant materials are subject to inspection and approval by the landscape architect prior to and after planting.
6. All plant materials must be certified and approved by the landscape architect prior to and after planting.
7. Maintenance of all plant materials shall be certified and approved by the landscape architect prior to and after planting.
8. Maintenance of all plant materials shall be certified and approved by the landscape architect prior to and after planting.
9. Maintenance of all plant materials shall be certified and approved by the landscape architect prior to and after planting.
10. Maintenance of all plant materials shall be certified and approved by the landscape architect prior to and after planting.

STORMWATER MANAGEMENT & WETLAND NOTES

1. The contractor shall maintain all stormwater and wetland areas prior to and after planting. If any area is not maintained, it must be replaced with a larger one.
2. The contractor shall maintain all stormwater and wetland areas prior to and after planting. If any area is not maintained, it must be replaced with a larger one.
3. The contractor shall maintain all stormwater and wetland areas prior to and after planting. If any area is not maintained, it must be replaced with a larger one.
MATERIALS LIST

A. Exterior Walls:
 1. Field Brick ‘Arriscraft’ Architectural Linear Series brick
 1) Dimensions: 4 1/16” W x 2 3/8” H x Random Lengths up to 23 5/8”
 2) Color: Opal
 2. Cast Stone Coping and Belt Course ‘Arriscraft’ Architectural
 1) Color: Obsidian
 3. Fiber Cement Wall Paneling
 1) Product: “Cembrit Patina Rough” by American Fiber Cement
 2) Color: Graphite
 4. Aluminum Storefront
 1) Aluminum framing:
 a) Finish: Baked Enamel
 b) Color: Silver
 2) Insulated glazing with low-emissive coating:
 a) Color: Clear with vertical ceramic fit pattern to protect birds
 b) Color: Clear with 100% coverage ceramic frit
 c) Color: Clear with 60% coverage ceramic frit

B. Roof:
 1. Main Roof: Natural Zinc Standing Seam Roofing
 1) Color: Natural, pre-patinated Zinc
 2. Low-slope Roof areas: Single ply membrane (Thermo Plastic Overlay)
 1) Color: Gray

C. Exterior Soffits:
 1. At Main Entry: Western Red Cedar solid lumber
 1) Color: Natural, clear oil finish
 2. At Roof overhangs: Painted, galvanized structural metal deck
 1) Color: Light gray

D. Exterior Doors:
 1. Main Entry: Aluminum and glass with medium width stile and rails.
 2. Service: Painted hollow metal doors and frames
Eastern Greenwich Civic Center | Materials

ZINC ROOFING

EXTERIOR WOOD

FIBER CEMENT WALL PANELING

MATERIAL SAMPLE BOARD

DECORATIVE MASONRY WITH BELT COURSE
MECHANICALS

A. Mechanical units are concealed from view within the building. An exception is the photovoltaic (solar) panels which are mounted to the roof and further discussed below. Refer to the site plan for the location of the building’s gas meter and electrical transformer and associated visual screening.

B. Photovoltaic (Solar) panels: The roof of the Civic Center is designed to be ready for the future installation of photovoltaic panels. In our submission to the Architecture Review Committee we have included the photovoltaics for review. This section includes detailed mechanical information on a photovoltaic panel that is currently available and would likely be used on this project. Also, this section includes detailed mechanical information on mounting system that is proposed to attach the panels to the roof.

C. Contents:
 1) Photovoltaic panel product data
 2) PV panel mounting system product data
More than 21% Efficiency
Captures more sunlight and generates more power than conventional panels.

Maximum Performance
Designed to perform in demanding real-world conditions of high temperatures, partial shade from overhead wires, and low light.¹

Commercial Grade
Intended for commercial sites where maximum energy production is critical.

Engineered for Peace of Mind
Designed to deliver consistent, trouble-free energy over a very long lifetime.²

Designed for Reliability
The SunPower Maxeon solar cell is the only cell built on a solid metal foundation. Virtually impervious to the corrosion and cracking that degrade conventional panels.

Same excellent durability as E-Series panels.
#1 Rank in Fraunhofer durability test.³

High Efficiency
Generate more energy per square foot
More energy to power your operations. X-Series commercial systems convert more sunlight to electricity by producing 45% more energy in the first year. This advantage increases over time, producing 60% more energy over the first 25 years to meet your needs.¹

Best Reliability, Best Warranty
A better warranty starts with a better product. Proven performance backs up our industry-best coverage, including out warranted 0.25% per year degradation rate.⁴
SunPower® X-Series Commercial Solar Panels | X21-345-COM

Electrical Data

<table>
<thead>
<tr>
<th></th>
<th>SPR-X21-345-COM</th>
<th>SPR-X20-327-COM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Power (Pnom)</td>
<td>345 W</td>
<td>327 W</td>
</tr>
<tr>
<td>Power Tolerance</td>
<td>+5/-3%</td>
<td>+5/-3%</td>
</tr>
<tr>
<td>Avg. Panel Efficiency²</td>
<td>21.5%</td>
<td>20.3%</td>
</tr>
<tr>
<td>Rated Voltage (Vmp)</td>
<td>57.3 V</td>
<td>57.3 V</td>
</tr>
<tr>
<td>Rated Current (Imp)</td>
<td>6.02 A</td>
<td>5.71 A</td>
</tr>
<tr>
<td>Open-Circuit Voltage (Voc)</td>
<td>68.2 V</td>
<td>67.6 V</td>
</tr>
<tr>
<td>Short-Circuit Current (Isc)</td>
<td>6.39 A</td>
<td>6.07 A</td>
</tr>
<tr>
<td>Max. System Voltage</td>
<td>1000 V UL & 1000 V IEC</td>
<td></td>
</tr>
<tr>
<td>Maximum Series Fuse</td>
<td>15 A</td>
<td></td>
</tr>
<tr>
<td>Power Temp Coef.</td>
<td>−0.29% / °C</td>
<td></td>
</tr>
<tr>
<td>Voltage Temp Coef.</td>
<td>−167.4 mV / °C</td>
<td></td>
</tr>
<tr>
<td>Current Temp Coef.</td>
<td>2.9 mA / °C</td>
<td></td>
</tr>
</tbody>
</table>

Operating Condition And Mechanical Data

- **Temperature**: −40°F to +185°F (−40°C to +85°C)
- **Impact Resistance**: 1 inch (25 mm) diameter hail at 52 mph (23 m/s)
- **Appearance**: Class B
- **Solar Cells**: 96 Monocrystalline Maxeon Gen III
- **Tempered Glass**: High-transmission tempered anti-reflective
- **Junction Box**: IP-65, MC4 Compatible
- **Weight**: 41 lbs (18.6 kg)
- **Max. Load**: Wind: 50 psf, 2400 Pa front & back Snow: 112 psf, 5400 Pa front
- **Frame**: Class 2 silver anodized; stacking pins

Tests And Certifications

- **Standard Tests**: UL1703 (Type 2 Fire Rating), IEC 61215, IEC 61730
- **EHS Compliance**: RoHS, OHSA 18001:2007, lead free, REACH
- **Sustainability**: Cradle to Cradle Certified™ Silver (contributes to LEED categories)
- **Ammonia Test**: IEC 62716
- **Desert Test**: 10.1109/PVSC.2013.6744437
- **Salt Spray Test**: IEC 61701 (maximum severity)
- **PID Test**: 1000V: IEC62804, PVEL 600hr duration
- **Available Listings**: UL, TUV, CEC

REFERENCES:

1. SunPower 360W compared to a Conventional Panel on same sized arrays (260W, 16% efficient, approx. 1.6 m²), 4% more energy per watt (based on 3pty module characterization and PVSim), 0.75%/yr slower degradation (Campeau, Z. et al. “SunPower Module Degradation Rate,” SunPower white paper, 2013).
2. “SunPower Module 40-Year Useful Life” SunPower white paper, May 2015. Useful life is 99 out of 100 panels operating at more than 70% of rated power.
6. Based on average of measured power values during production.
7. Type 2 fire rating per UL1703:2013, Class C fire rating per UL1703:2002.
8. See salesperson for details.

©September 2017 SunPower Corporation. All rights reserved. SUNPOWER, the SUNPOWER logo, MAXEON and Helix are trademarks or registered trademarks of SunPower Corporation. Specifications included in this datasheet are subject to change without notice.
Installation Instructions

S-5!® Warning! Please use these products responsibly! Visit our website or contact your S-5! distributor for detailed installation instructions and available load test results. The user and/or the installer of these parts is responsible for all necessary engineering and design for the intended use of these parts in an assembly or application. Note that a continuous ground must be followed in accordance with National Electric Code (NEC), ANSI/NFPA 70. Installation in Canada must be in accordance with CSA C22.1, Safety Standard for Electrical Installations, Canadian Electrical Code, Part 1. For UL Subject 2703 Listed assemblies use with PV Modules having a maximum fuse rating of 25A or less. For ETL UL-1703 Listed Model Number MD40-B-300S use with PV Modules having a maximum fuse rating of 15A or less. Prior to installation, contact the local code Authority Having Jurisdiction (AHJ) to determine the proper grounding requirements.

Install S-5! mini clamp. See mini clamp installation instructions.

1. Place mounting disc on the S-5! mini clamp. Secure Universal PV stud through the mounting disc into the S-5! mini clamp. Using a 13 mm deep-well socket on the PV stud's hex nut, tighten universal PV stud to 140–160 inch pounds. Install one PV frame on top of the mounting disc utilizing the module placement bevel guide to ensure proper placement.

2. Install a second PV frame on top of the mounting disc again utilizing the module placement bevel guide to ensure proper placement.

3. Install the universal PV anchor grab to the universal PV stud, with the flanged nut to secure the two PV frames (see Diagram A). Tighten flange nut to 100–120 inch pounds.

4. For end/edge conditions, use the EdgeGrab™. There are two assembly options for the EdgeGrab, dependent upon the PV frame thickness. For frame thicknesses 30–48 mm, install the EdgeGrab by placing the serrated L-flange on top of the mounting disk (see Diagram B). Then, drive the universal PV stud through the serrated L-flange and the mounting disk, and into the S-5 mini clamp. The serrated L-flange will be positioned beneath the stud's hex nut. Using a 13 mm deep-well socket, tighten the universal PV stud to 140–160 inch pounds. Next, set the PV module atop the mounting disk, making the thin edge of the serrated L-flange flush against the PV frame. Slide the top component of the EdgeGrab onto the stud, allowing the serrated sides to interlock at the appropriate height. Add the flange nut to the stud to secure the PV frame. Tighten flange nut to 100–120 inch pounds.

5. For frame thicknesses 34–51 mm, position the serrated L-flange atop the stud's hex nut. Proceed with the remainder of Step 4.

Note: When ProteaBracket™ is used in conjunction with the S-5-PV Kit, an additional nut is required during installation to secure the universal PV stud and mounting disk to ProteaBracket's slotted L-flange.

These instructions are for use by those experienced in the trade. Always follow appropriate safety precautions and use appropriate tools.
A. Standing Seam Metal Roof
B. S-5I® Mini Clamp (Sold separately)
C. Stainless Steel Mounting Disc
D. Stainless Steel M8–1.25x68 mm Universal PV Stud w/hex nut (Tensioned between 140 and 160 inch pounds)
E. Glass
F. Module Frame Cross Section (Frame thickness from 1.3” [33 mm] to 2.5” [64 mm])
G. Universal PV Grab
H. Stainless Steel M8–1.25 Hex Flange Nut (Tensioned between 100 and 120 inch pounds)
A. Standing Seam Metal Roof
B. S-5!® Mini Clamp (Sold separately)
C. Stainless Steel Mounting Disc
D. Stainless Steel M8–1.25x68 mm Universal PV Stud w/hex nut (Tensioned between 140 and 160 inch pounds)
E. Glass
F. EdgeGrab™ Serrated L-Flange (See installation instructions, Steps 4 and 5, for details on EdgeGrab)
G. EdgeGrab™ Serrated Top Component (See installation instructions, Steps 4 and 5, for details on EdgeGrab)
H. Stainless Steel M8–1.25 Hex Flange Nut (Tensioned between 100 and 120 inch pounds)
S-5!® suggestions for spacing of S-5! mini clamps for PV arrays.

The following suggestions assume that determination has been made that the roof to which the S-5! mini clamps will be attached is structurally adequate. Any loads imposed on the S-5! mini clamps will be transferred to the panels. Panel seams must have sufficient flexural strength to carry these loads. Panels must also be adequately attached to the building structure, and the structure must be sufficient to carry these loads. The makers of S-5! mini clamps make no representations with respect to these variables. It is the responsibility of the user to verify this information, or seek assistance from a qualified design professional if necessary.

The key to frequency and spacing of attachment points for PV frames utilizing the S-5-PV Kit is to distribute loads to the metal standing seam panels in a manner that is consistent with the intended distribution of loads from the roof panels into the building structure. With very few exceptions, the attachment of a single S-5! mini clamp to the seam will be stronger than a single point of attachment of the seam to the building structure. Hence the “weak link” is not the S-5! mini clamp but the attachment clips that hold the metal panels to the building structure, or the beam strength of the roof panel seam itself.

The most conservative approach to the spacing/frequency of PV frame attachment to the roof is to determine the spacing/frequency of the roof’s attachment to the building structure, then duplicate it at minimum. Determining panel attachment spacing in one axis is very simple. Standing seam panels’ attachment will be made using concealed hold-down clips within the seam area of the panel. So, in that axis, the clip spacing is the same as the seam spacing. The location of the clips along the seam (in the other axis) can be determined by a) consultation with the roof system manufacturer or installer, b) checking from the underside or, c) close examination from the topside along the seam.

There will usually be a slight, but detectable, deformation of the seam at the clip location visible from the roof’s topside. Many standing seam roof systems are installed on “pre-engineered” steel buildings. The attachment spacing in that industry is typically 5'-0” and is readily apparent by inspecting the spacing of the structural purlins to which the panel clips are attached from the roof underside (interior of the building).

If, for instance, the panel clips are spaced 5'-0” on center along the seam, then use the 5'-0” dimension as a maximum spacing for the S-5! mini clamps. (S-5! mini clamps may also be spaced at closer centers, but not wider.) When modules are attached directly without racking in the landscape orientation, this spacing dimension is dictated by the smallest dimension of the PV frame. Using the roof panel clip spacing as a maximum spacing template for S-5! mini clamps is a sound practice, whether the PV modules are attached directly to S-5! mini clamps, or to a racking system and then to the S-5! mini clamp (and panel seams). To evenly distribute loads, it is also necessary that each seam be involved in the finished assembly. Thus, every time a seam is traversed, it should be attached. Such an attachment scheme should evenly distribute wind loads into the building structure through the panels and their attachment, as was intended in the original roof construction assembly.

Please note these are only suggestions. Wind dynamics are complex, and S-5! advises review of the planned PV frame attachment design by a qualified professional who understands wind effects and metal roof design and construction. In certain solar installations, a design professional may determine that seams can be skipped as points of attachment, but this determination must be made on a job-specific basis.

S-5" Warning! Please use this product responsibly!

Products are protected by multiple U.S. and foreign patents. Visit the website at www.S-5.com for complete information on patents and trademarks. For maximum holding strength, setscrews should be tensioned and re-tensioned as the seam material compresses. Clamp setscrew tension should be verified using a calibrated torque wrench between 160 and 180 inch pounds when used on 22ga steel, and between 130 and 150 inch pounds for all other metals and thinner gauges of steel. Consult the S-5! website at www.S-5.com for published data regarding holding strength. Copyright 2014, Metal Roof Innovations, Ltd. S-5! products are patent protected. S-5! aggressively protects its patents, trademarks, and copyrights.
The concept of combining photovoltaic arrays with standing seam metal roofing is growing—and for good reasons. A standing seam metal roof has a life expectancy consistent with that of framed PV modules. A 30-year power source on a 40-year roof, along with zero-penetration technology, creates the most sustainable roof system available with alternative power generation, all without compromising the roof manufacturer’s warranty!

The new S-5-PV Kit boasts an important breakthrough in PV mounting technology. It is one of the first solar module mounting solutions in the industry to be listed to the new UL subject 2703, a standard that covers both bonding and mounting. Furthermore, the S-5!* Mounting Disk has gained an ETL Listing to UL 1703.*

The S-5-PV Kit features a groundbreaking new stainless steel mounting disk with twelve nodes designed to ensure the module-to-module conductivity of anodized aluminum module frames. This means it automatically provides a ground path in the module frame. No lugs or wire required except to connect one string of modules to another and to ground the system. This connection detail represents installed electrical cost savings of $6-$12 per unit. In most cases, the savings in time and materials is sufficient to pay for the entire S-5-PV Kit and clamp setup.
The S-5-PV Kit is a revolutionary new solution to attach solar PV panels to standing seam metal roofs!

The S-5-PV Kit is furnished with the hardware shown at right, excluding the attachment clamp, which is supplied separately. (When ProteaBracket™ is used in conjunction with the S-5-PV Kit, an additional nut is required during installation to secure the universal PV stud and mounting disk to ProteaBracket’s slotted L-flange.) The S-5-PV Kit is compatible with most common metal roofing materials, including brass. The S-5!® EdgeGrab™ and S-5-PV Kit together accommodate PV frame thicknesses 30–48 mm (if EdgeGrab’s serrated L-flange is positioned below the stud’s hex nut) and 34–51 mm (if EdgeGrab’s serrated L-flange is positioned above the stud’s hex nut). \(^1\)

The embossed panel guide makes the module placement easier. The mounting disk is multi-directional and rails are not required.

Four strategically placed under-disk hooks assist in wire management. The PV grab ears that hold the solar panel in place are broader to allow for ease of installation and precise module engagement.

Accommodating module thicknesses between 30 and 51 mm, the S-5-PV Kit fits the majority of solar panels on the market. Using the S-5! mini clamps, it fits most standing seam metal roofs. When paired with other S-5! products, the S-5-PV Kit and EdgeGrab will work on most exposed-fastened and corrugated metal roofs. The standard grab is designed to fit field conditions (two adjacent panels), while the new EdgeGrab is designed specifically for end conditions.

Wind dynamics are complex; thus, each system should be reviewed by a qualified licensed professional who understands wind effects on metal roof design and construction prior to purchase and installation. For more detailed information including specifications, installation instructions, and CAD drawings, visit www.S-5.com or your S-5-PV Kit distributor.

The S-5-PV Kit continues to be the easiest, most cost-effective way to install solar panels directly to standing seam metal roofs, remaining the most popular choice worldwide.

S-5!® Warning! Please use this product responsibly!

Products are protected by multiple U.S. and foreign patents. Visit the website at www.S-5.com for complete information on patents and trademarks. For maximum holding strength, setscrews should be tensioned and re-tensioned as the seam material compresses. Clamp setscrew tension should be verified using a calibrated torque wrench between 160 and 180 inch pounds when used on 22ga steel, and between 130 and 150 inch pounds for all other metals and thinner gauges of steel. Consult the S-5! website at www.S-5.com for published data regarding holding strength.

Copyright 2014, Metal Roof Innovations, Ltd. S-5! products are patent protected.
S-5! aggressively protects its patents, trademarks, and copyrights. Version 032714.
Application for Exterior Alteration/ New Construction

Name of Project: New Eastern Greenwich Civic Center
Address of Project: 90 Harding Road
Tax ID: 06-4689/S Building Zone: R-7
Proposed Use of Floor Space: New Civic Center - See Attached Plans
Previous Occupant: None Previous Use: None
Other tenants/uses in the building: None
Changes to the floor area (GSF): Existing: n/a Proposed: 35,482
Has a site plan been submitted to Planning and Zoning for this site/project? □ NO: ☑ YES:
Has this project been reviewed by ARC prior to this submission? □ NO ☑ YES:
Describe the project including ALL changes to the exterior, landscaping, and exterior lighting.

See attached plans and elevations

Will there be any change to, or addition of mechanical equipment? □ NO ☑ YES:
Where will it be located? See attached plans and elevations

Name of Property Owner: Town of Greenwich
Signature of Property Owner:
Name of Applicant: Alan Monelli
Email: This email address will be used to contact you. amonelli@greenwichct.org
Address: 101 Field Point Road
Daytime Phone: 203-622-7743
Applicant Signature:
Architectural Firm: TSKP
Architect’s Phone Number: 860-547-1970

Check # Check Amount: PLPZ
TOWN OF GREENWICH C/O FINANCE DEPT

OWNERSHIP
TOWN OF GREENWICH C/O FINANCE DEPT
101 FIELD POINT RD
GREENWICH, CT 06830
LOT NO 1 HARDING RD N5

Tax ID 440/034

TRANSFER OF OWNERSHIP

Date
09/30/1966 NA
Bk/Pg: 746, 361-64

$0

EXEMPT

VALUATION RECORD

Assessment Year 10/01/2010 10/01/2015 10/01/2016 10/01/2017 10/01/2018 10/01/2019

VALUATION
Market
E 8637500 1001000 1000000 1000000 1000000 1000000 1000000
B 5000300 16694000 16694000 16694000 16694000 16694000 16694000
T 13637800 26704000 26704000 26704000 26704000 26704000 26704000

70% Assessed
E 6046250 7007000 7000000 7000000 7000000 7000000 7000000
B 3500210 11685800 11685800 11685800 11685800 11685800 11685800
T 9546460 18692800 18692800 18692800 18692800 18692800 18692800

LAND DATA AND CALCULATIONS

Rating Measured Table Prod. Factor Land Type Soil ID Acreage Effective Effective Base Adjusted Extended Influence Value
1 Residential Land 14.3000 1.00 736713.00 736713.00 10535000 B -5% 1000800

Supplemental Cards
TRUE TAX VALUE 1000800

SUPPLEMENTAL LAND TOTAL LAND VALUE 1000800

BP14: 14-3687 nvc restroom demo'd 2016 GL
DBA: Greenwich Civic Center
P: 16 sqpr

Supplemental Cards

Permit Number Piling Date Est. Cost Field Visit Est. SqFt Type

Supplemental Cards
PHYSICAL CHARACTERISTICS

ROOFING
- Built-up

WALLS
- Frame: B 1 2 U
- Brick: Yes Yes Yes
- Metal: Yes
- Guard: Yes

FRAMING
- B 1 2 U
- R Conc: 2992 26445 3956 0

HEATING AND AIR CONDITIONING
- B 1 2 U
- Heat: 1646 26445 3956 0
- Sprink: 2992 26445 3956 0

IMPROVEMENT DATA

SPECIAL FEATURES

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C : Remod 2012</td>
<td></td>
</tr>
<tr>
<td>01 PAVING</td>
<td>0.00</td>
</tr>
<tr>
<td>02 TENNIS</td>
<td>0.00</td>
</tr>
<tr>
<td>03 TENNIS</td>
<td>0.00</td>
</tr>
<tr>
<td>04 PENCEL</td>
<td>4.00</td>
</tr>
<tr>
<td>05 PAVING</td>
<td>0.00</td>
</tr>
<tr>
<td>06 PENCEM</td>
<td>3.00</td>
</tr>
</tbody>
</table>

SUMMARY OF IMPROVEMENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Use</th>
<th>Stry</th>
<th>Const</th>
<th>Hgt</th>
<th>Type</th>
<th>Grade</th>
<th>Year</th>
<th>Eff</th>
<th>Const</th>
<th>Year Cond</th>
<th>Rate</th>
<th>Features</th>
<th>Rate</th>
<th>Size or</th>
<th>Computed</th>
<th>Phys</th>
<th>Obso</th>
<th>Market</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C CLUBHOUSE</td>
<td>Wd</td>
<td>0.00</td>
<td>6</td>
<td>83</td>
<td>Avg</td>
<td>G</td>
<td>1950</td>
<td>2000</td>
<td>VG</td>
<td>5.00</td>
<td>N</td>
<td>0.00</td>
<td>31812</td>
<td>0</td>
<td>0</td>
<td>150</td>
<td>100</td>
<td>1578400</td>
<td></td>
</tr>
<tr>
<td>01 PAVING</td>
<td></td>
<td>0.00</td>
<td>85</td>
<td>Avg</td>
<td>1975</td>
<td>1985</td>
<td>3.45</td>
<td>N</td>
<td>5.18</td>
<td>28000</td>
<td>145040</td>
<td>13</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>126200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 TENNIS</td>
<td></td>
<td>0.00</td>
<td>83</td>
<td>Avg</td>
<td>1980</td>
<td>1985</td>
<td>36000</td>
<td>N</td>
<td>54000</td>
<td>60x120</td>
<td>54000</td>
<td>13</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>47000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 TENNIS</td>
<td></td>
<td>0.00</td>
<td>83</td>
<td>Avg</td>
<td>1980</td>
<td>1985</td>
<td>36000</td>
<td>N</td>
<td>54000</td>
<td>60x120</td>
<td>54000</td>
<td>13</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>47000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 PENCEL</td>
<td></td>
<td>4.00</td>
<td>51C</td>
<td>Avg</td>
<td>1990</td>
<td>1990</td>
<td>12.65</td>
<td>Y</td>
<td>20.87</td>
<td>380</td>
<td>7930</td>
<td>11</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>7100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 PAVING</td>
<td></td>
<td>0.00</td>
<td>6</td>
<td>Avg</td>
<td>1950</td>
<td>1985</td>
<td>6.30</td>
<td>N</td>
<td>9.45</td>
<td>320</td>
<td>3020</td>
<td>13</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>260</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06 PENCEM</td>
<td></td>
<td>3.00</td>
<td>Avg</td>
<td></td>
<td>1950</td>
<td>1985</td>
<td>226.00</td>
<td>N</td>
<td>330.00</td>
<td>1 DIA</td>
<td>300300</td>
<td>13</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>261300</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL IMPROVEMENT VALUE
16271600

Data Collector/Date: bd 10/23/2012
Appraiser/Date: TGG 10/01/2015
Neighborhood: Neigh 112060 AV
EXEMPT

VALUATION RECORD

Assessment Year 10/01/2010 10/01/2015 10/01/2016 10/01/2017 10/01/2018 10/01/2019

VALUATION	Market	1	8637500	10010000	10010000	10008300	10008300	10008300
Rating		B	5000300	16694000	16694000	16271600	16271600	16271600
		T	13637800	26704000	26704000	26279900	26279900	26279900

70% Assessed

VALUATION	1	6046250	7007000	7007000	7005810	7005810	7005810	
Rating		B	3500210	11685800	11685800	11390120	11390120	11390120
		T	9546460	18692800	18692800	18395930	18395930	18395930

LAND DATA AND CALCULATIONS

Land Type Residential Land
Rating 1
Soil ID 14.3000
Measured Soil -or- Actual 1.00
Effective Value 736713.00 736713.00
Depth Factor 10535000 B -5%
Base Rate 10008300
Adjusted Rate
Extended Value
Influence Factor
Value

Supplemental Cards: TRUE TAX VALUE

TOTAL LAND VALUE 10008300
Improvement Data

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Units</th>
<th>Cost</th>
<th>Total</th>
<th>Pct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Cost</td>
<td></td>
<td>30401 276.05</td>
<td>8392062</td>
<td></td>
</tr>
<tr>
<td>Exterior Walls</td>
<td></td>
<td>30401 55.60</td>
<td>1638195</td>
<td></td>
</tr>
<tr>
<td>Heating & Cooling</td>
<td></td>
<td>30401 26.80</td>
<td>814808</td>
<td></td>
</tr>
<tr>
<td>Sprinklers</td>
<td></td>
<td>30401 6.77</td>
<td>205812</td>
<td></td>
</tr>
<tr>
<td>Basic Structure Cost</td>
<td></td>
<td>30401 360.21</td>
<td>10950877</td>
<td></td>
</tr>
<tr>
<td>Unfinished Basement</td>
<td></td>
<td>2992 71.89</td>
<td>215095</td>
<td></td>
</tr>
<tr>
<td>Heating & Cooling</td>
<td></td>
<td>1646 15.65</td>
<td>25760</td>
<td></td>
</tr>
<tr>
<td>Sprinklers</td>
<td></td>
<td>2992 8.52</td>
<td>25492</td>
<td></td>
</tr>
<tr>
<td>Building Cost New</td>
<td></td>
<td>30401 368.98</td>
<td>11217224</td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td>0 9.00</td>
<td>743163</td>
<td>6.63</td>
</tr>
<tr>
<td>Depreciated Cost</td>
<td></td>
<td>30401 344.53</td>
<td>10474061</td>
<td></td>
</tr>
<tr>
<td>Rounded Total</td>
<td></td>
<td>0 0.00</td>
<td>10474100</td>
<td></td>
</tr>
<tr>
<td>OMP</td>
<td></td>
<td>1411 35.05</td>
<td>49460</td>
<td></td>
</tr>
<tr>
<td>Total Exterior Features Value</td>
<td></td>
<td>49460</td>
<td>49460</td>
<td></td>
</tr>
<tr>
<td>Depreciated Ext Features</td>
<td></td>
<td>46180</td>
<td>46180</td>
<td></td>
</tr>
<tr>
<td>Total Before Adjustments</td>
<td></td>
<td>10520280</td>
<td>10520280</td>
<td></td>
</tr>
<tr>
<td>Neighborhood Adjustment</td>
<td></td>
<td>5268120</td>
<td>5268120</td>
<td>50.00</td>
</tr>
<tr>
<td>TOTAL VALUE</td>
<td></td>
<td>35780480</td>
<td>35780480</td>
<td></td>
</tr>
</tbody>
</table>

Special Features

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C : Remod 2012</td>
<td></td>
</tr>
<tr>
<td>04 : TR</td>
<td></td>
</tr>
</tbody>
</table>

Summary of Improvements

ID	Use	Strty	Const	Grade	Year	Eff	Const	Year Cond	Base Rate	Features	Adj Size	Computed Value	PhysObsd	Market %	Value		
C	CLMTHR	0.00	WGD	1950	2080	WD	0.00	N	0.00	31812	0	0	150	100	15790400		
01	PAVING	0.00	85	Avg	1975	1985	AV	3.46	N	5.18	28000	145040	13	0	100	100	126200
02	TENNIS	0.00	83	Avg	1980	1985	AV	36000	N	54000	60x120	54000	13	0	100	100	47000
03	TENNIS	0.00	83	Avg	1980	1985	AV	36000	N	54000	60x120	54000	13	0	100	100	47000
04	FENCECL	4.00	6	Avg	1990	1990	AV	12.65	Y	20.87	380	7300	11	0	100	100	71200
05	PAVING	0.00	6	Avg	1950	1985	AV	6.30	N	9.45	320	3200	13	0	100	100	2600
06	FENCEM	3.00	Avg	1950	1985	AV	220.00	N	330.60	1 DIA	300300	13	0	100	100	261300	

Data Collector/Date
- bd 10/23/2012

Appraiser/Date
- TOG 10/01/2015

Neighborhood
- Neigh 112060 AV

Supplemental Cards
- TOTAL IMPROVEMENT VALUE: 16271600